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Nonpermanence of the change in four-momentum of the 
gravitational field of an isolated radiating source 

M A Rotenberg 
Division of Science, University of Wisconsin-Parkside, Kenosha, Wisconsin 53140, USA 

Received 27 November 1972 

Abstract. The well known use of the Einstein energy pseudo-tensor density t i  for determining 
the rate of change of four-momentum, by gravitational radiation, of an isolated cohesive 
source in motion contains an important assumption : the total potential four-momentum of 
the gravitational field, represented by the integral oft: over all space, undergoes no secular 
variation. A mathematical justification of this assumption is presented here. However, 
an example is discussed in which consideration must be given to the variation of the total 
potential three-momentum of the field, despite the nonpermanence of this variation : 
namely the cyclic motion of the newtonian centre of mass of a bounded, cohesive, purely 
rotating system. 

Finally it is shown that replacement of the Einstein pseudo-tensor density by that of 
Landau and Lifshitz has no effect on the main results of this paper. 

1. Introduction 

The Einstein pseudo-tensor density 4: of potential (or gravitational) energy, which is 
connected with the material energy tensor density Yi by the conservation law (Eddington 
1924 $ 59, Tolman 1934 $87, Weber 1961 $ 6.l)t 

has been used in several works on general relativity to show that, according to the linear 
approximation to the Einstein field equations 

gravitational waves carry away four-momentum from an emitter (Bonnor and Rotenberg 
1961, Weber 1961 g 7 . 5  and 7.6, Landau and Lifshitz 1962 9 104, Papapetrou 1962). 
This is explained in the following way. Let S be a two-dimensional sphere with centre 
the origin 0 (of xu) and of radius r, containing space volume Vand including the source. 
Then, integrating equation (1.1) over Vand using Gauss’ theorem we have 

t In this paper, a Latin index runs from 1 to 4, a Greek one from 1 to 3 ; the comma notation, indicating partial 
differentiation, and the summation convention are assumed for both types of indices. The coordinates used 
throughout this paper are (pseudo-)galilean coordinates xi = (x,, t )  = ( x ,  y, z ,  t).  
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784 M A  Rotenberg 

where n, gf x J r  are the components of the outward space normal to S. Since Sk = 0 
on S, we obtain 

This is the well known integral theorem referring to the four-momentum of matter and its 
gravitational field : the left-hand side represents the rate of change of four-momentum 
J ,  of the source plus field inside S; this is given by the right-hand side, which represents 
the rate of flow of four-momentum of the field into S .  

To apply equation (1.4) to an emitter of gravitational radiation, the right-hand side 
is calculated for the appropriate wave field. With contributions of order r -  ' ignored 
for a large sphere S, the result is (Landau and Lifshitz 1962 0 104) 

1 -- d J ,  - --Q"' Q"' 45 BY P Y  dt (1.5) 

and (Papapetrou 1962) 

Here. 

Q Z P  'Zf (3x,xp - S a p ~ y ~ y ) T 4 4  dv (1.7) 
V 

are the quadrupole moments about ihe coordinate planes x, = 0, which, along with 

are to be calculated for retarded time U = t - r ;  a prime denotes differentiation with 
respect to U .  The formulae (1.5) and (1.6) are based on the quadrupole and octupole 
wave solutions of the linear approximation to equation (1.2) (obtained in 4 2). 

It has been the practice to ignore the contribution 

for large r ,  on the left of equation (1.4) and, consequently, to regard the formulae (1.5) 
and (1.6) as referring to the change in four-momentum of the source. This was done on 
the assumption that the total potential four-momentum of the gravitational field, 
represented by 

J t;dc 
a l l  space 

(1.10) 

undergoes no secular change (Eddington 1924 4 59, Weber 1961 9 7.5)1. The main object 
of this paper is to establish mathematically the truth of this assumption for an isolated 
cohesive source in any motion. 

To achieve this we first derive the external solution, for the source, of the linear 
approximation to equation (1.2); this is done in $2. Then in Ej 3, by introducing what is 

t Contrast this assumption with the criticism made by Peres (1960) on a proof by Infeld (1959) that gravitational 
radiation does not exist. 
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known as Synge's argument and applying it to the solution, we set up an indirect method 
of calculating the integral (1.10) to show that it suffers no secular variation. As explained 
there, direct computation of this integral would be an almost impossible task. Included 
in $ 4  is a brief discussion of the cyclic motion of the newtonian centre of mass of an 
isolated, coherent, purely rotating source. The purpose of this is to illustrate that not 
every time is it permissible to disregard the variation of the total potential three- 
momentum of the field, despite the cyclic property of this variation. To avoid such errors, 
a suitable correction term (namely the expression (4.3)) is added to the formula on the 
right of equation (1.6). The paper ends ( $ 5 )  with a proof that the main results are 
unaltered when the Einstein pseudo-tensor density is replaced by that of Landau and 
Lifshitz. 

2. Solution of the linearized field equations 

We outline here a derivation of a solution of the linear approximation to the field 
equations (1.2) appropriate to an isolated coherent distribution of matter, its centre of 
mass chosen as the origin 0 of space coordinates x,. 

For weak fields we may write 

g i k  = q i k f Y i k >  q ik  = qik  E diag( - 1, - 1, - 1, + 1) 

where y l k  are small. Introduce $ ik  by 

$, Ik = y. tk -1 Zl?ikqab?ab * Yik = $ i k - h i k f b 4 a b  (2.2) 

qab$ia,b = O. (2.3) 

and select (pseudo-)galilean coordinates xi satisfying the harmonic condition 

The linear approximation to equation (1.2) then reduces to the wave equation (Eddington 
1924 0 57, Landau and Lifshitz 1962 $ 101) 

q a b 4 i k , a b  = - 16nIT;k. (2.4) 
Of equations (2.4) and (2.3), the solution in Kirchhoff form for outgoing waves is 
(Eddington 1924 0 57) 

$ ik  = -4 J, r*-  'T;,(z,, t - r* )  du, qab'T;a,b = 0 (2.5) 

in which V is a fixed space volume containing all the sources of the field and r* is the 
distance of the point P(f,) (2, = f,jj, 3, associated with the space element du = df  dp d.5 
of integration, from the field point P(x,) of interest. The second of equations (2.5), 
which expresses the conservation law of four-momentum in the linear approximation, 
ensures that the first of equations (2.5) satisfies equation (2.3) as well as equation (2.4) 
(Eddington 1924 $ 57). 

It is useful to have the multipole expansion of this solution, got by expanding the 
integrand on the right of the first of equations (2.5) by the Taylor theorem so that r,  the 
fixed distance OP, occurs in place of r*. The expansion involves moments of T k  of all 
orders about the coordinate planes, namely 

J v  
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Indeed, let m kf I,, be the total mass of the sources and a be a constant with the dimension 
of length, and let these parameters m, a be defined in the newtonian sense but in relativistic 
units employed in this work. Introduce the following specific moments h i k : a p r . , .  , unaffected 
by any change of units in m or a :  

def m- l a - s - 2  
hap:ala2 ... as - Iap:a la2  ... a, 

had:ala2...a, = m a a4:alaz ... a, (2.7) def - 1  

d ! f m - l  - - s  
h44:ala2.. .Us a '44:ala2 ... 0,' 

Then the multipole expansion turns out to be (see Rotenberg 1964 appendix A, 1972) 
1 

4 i k  = m 4 i k  (2.8) 
1 

with 4ik given, explicitly up to order a3, by 

- 4a3na(r- ' h i p : ,  + r -  2h,p:a) + O(a4) (2.9) i,, = -4a 2 r - 1 h  

1 
4,, = -4a2na(r- 1hi4 :a+r -2ha4:a )  

- 2a3{nan,r- 1hi4:up +(3nan,-6a,)(r-2h~,~a,+ r -  3ha,:a,)} + O(a4) (2.10) 
1 
4,, = -4r-1 -2a2{nan,r- 1hj;4~up+(3nanp-8ap)(r-2h~4,ap+~-3h44:ap)}  

-$a3{n,n,n,r- 1 h ~ 4 : a p r  + 3na(2n,n, - hP,)r- Zhj;4:apr 

+3n,(5npnr-38pr)(r-3h~4~upr+r-4h44~ap,)} +O(a4). (2.1 1) 
def Here na = x a / r ;  hik:apr . , ,  are to be evaluated for time U = t - r ;  and a prime denotes 

differentiation with respect to U. 
This solution, which is an external solution (for the sources) of the linear approxima- 

tion to equation (1.2) or to 

Rik = 0 (2.12) 

is known as the multipole wave solution of the linear approximation; its 2s pole contribu- 
tion (s = 0,1,2,. . .) is formed by the coefficients of d on the right-hand sides of equations 
(2.9) to (2.11). The dipole wave is absent from the solution (a well known result); the 
lowest wave-like terms are those of the quadrupole wave, involving a'. 

From equation (2.8) it is clear that the linear approximation to equation (2.12), 
being linear in 4ik (and their derivatives), is linear in m. Thus the multipole wave solution 
(2.8) to (2.11) satisfies that contribution in equation (2.12) which is linear in m. 

To reduce considerably the calculations required in 8 4, we apply a standard treatment 
(outlined below) on the linearized conservation equations in equations (2.6), which may 
be split up as 

Tap9,  = T4.49 T4s.p = T44,4* (2.13) 

This treatment on equations (2.13) generates an infinite sequence of relations among 
h i k : a p r , . , ,  of which the leading ones are (Landau and Lifshitz 1962 8 104, Papapetrou 1962, 
Rotenberg 1964 appendix A) 

h,, = 1 (2.14) 

ha, = h4,:, = 0 (2.15) 
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= -h' 4 a : ~  = T 1 h l l  44:ap' h4(u:,) = -hi , : , ,  (2.16) 
U P  

h u ( , : y )  = -hku:,,7 h(a8:y)  = + ' L a y ,  h4(u:gy) = -hk4:u,y (2.17) 
the notations 

' ( U P )  sf + ' , a  , ' ( , B y )  ' a , ,  + + ' , u p  (2.18) 

involving cyclic permutations of subscripts, have been employed in equations (2.16) and 
(2.17). In equations (2.9) to (2.11) we use the first two relations of equations (2.16) and of 
equations (2.17) and the notations 

def def 
map - '44:ap, 

mup:y = h a 6 : y .  ma:,, = h4ir:gy7 mu,y = h44:upy; 

mu:, = ' , a : ,  
def del def (2.19) 

the multipole wave solution becomes 
1 
4a, = -2a2r- ' m ~ , - 4 a 3 n , ( r - ' m ~ a , u + r - 2 m a , ~ , ) + o ( a 4 )  (2.20) 
1 
4u4 = 2a2nu(r- 'mi ,  - 2r- 'ma:,) 

+2a3{2n,n,r- 'm&,,,+(3nUn, -6u,)(2r-2mau:p-r - 3  marup)}  + o ( ~ ~ )  (2.21) 
1 
444 = -4r-1 - ~ a 2 { n , n , r - 1 m ~ , + ( 3 n , n , - 6 , , ) ( r - 2 m ~ , + r - 3 m , , ) }  

- 2a3{2n,n,n,r- lmb,:, + 2n,(2npnr - 2m(up:,) 
+ n,(5n,n, - 36,,)(r-3mb,, + r-4m0pr)} + O(a4). (2.22) 

In these, primes accompanying the functions ma,, . . . introduced from equations (2.19) 
mean differentiation with respect to U = t - r ,  at which time these functions are to be 
calculated. 

This solution will be needed in # 3 and 4 (and appendix 1). There it is assumed that 
an appropriate complete external solution of equation (2.12) is expansible as an infinite 
series in ascending powers of m, 

P P m 

4 i k  = 1 m p d ) i k  
p =  1 

(4ik independent of m) (2.23) 

1 
with the leading contribution d) ik  to q ! ~ ~ ~  given by the multipole wave solution (2.20) to 
(2.22) of the linear approximation (to equation (2.12)). 

To conclude this section we derive the relations (2.17) as an illustration of the standard 
treatment on the conservation equations (2.13) for yielding an infinite sequence of 
relationships involving hik:,,,.,, . Multiplying the first of equations (2.13) by xyxd and 
integrating over any fixed space volume V enclosing the source distribution, we have 

,. n 

By virtue of Gauss' theorem the first integral on the extreme right of equation (2.24) 
vanishes ; so, using the first of equations (2.6), equations (2.7) and the first of equations 
(2.18) in equation (2.24), we obtain the first of the relations (2.17). Similarly, multiplying 
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the second of equations (2.13) by xyxdx integrating over V and utilizing Gauss' theorem, 
the first of equations (2.6), equations (2.7) and the second of equations (2.18), we get the 
third of the relations (2.17). The first and third of the relations (2.17), when combined, 
yield the second of these relations. Similar methods are employed to establish the 
relations (2.14) to (2.16) and, indeed, the set of relations among the moments 
hik:oDr, , ,  of any specified order. 

3. Variation of the total potential four-momentum 

To calculate the total potential four-momentum (1.10) of the gravitational field we shall 
use an argument due originally to Synge (1960,s IV-6) and clearly explained by Bonnor 
(1959). This argument applies to approximate solutions of the field equations for any 
gravitating source, and for a bounded cohesive source (referred to as C in this section) 
it is as follows. 

Consider any approximate solution of equation (2.12) relevant to the source X. 
Substituting the solution into 

we can get a value for the energy tensor TL corresponding to it. This will not vanish 
anywhere, in contrast with the case of an appropriate exact solution in which T i  is zero 
everywhere outside C. Thus for the approximate solution, a continuous distribution of 
matter C' will be present throughout space-time, and this distribution combined with 
C may be regarded as representing the 'source' of the approximate solution. To put it 
more concisely, the approximate solution of equation (2.12) may be taken as an exact 
solution of equation (3.1) corresponding to the extended source C + C'. 

Let us now use this argument for the external solution (2.8). For the source C it 
satisfies the linear approximation, in which the four-momentum of C is conserved. Since 
the solution satisfies the contribution in equation (2.12) that is linear in m, i t  follows that 
if  we insert the solution in equation (3.1), we will have for the energy tensor density an 
expression in the form of an infinite series in ascending powers of m starting with the 
term in m 2 .  This expansion may be written as 

2 
where the leading contribution G;, calculated in appendix 1, is the coefficient of m z  in the 
Einstein tensor G;. Outside C the metric (2.S), by Synge's argument, represents exactly 
the continuous distribution C' described by the energy tensor density (3.2); it  has four- 
momentum flowing out of a large sphere S, centre 0, at the rate 

Consequently, to maintain the metric field (2.S), and thus to maintain the constancy of 
four-momentum of C, matter C' must be extracted out of S from the neighbourhood of 
C with four-momentum flowing across Sa t  the rate (3.3). However, in the actual physical 
situation no such matter E' exists, whence it follows that the four-momentum of the 
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central source 2 must increase (or, to  be more exact, change) at the rate (dJw/dt), given 
by equation (3.3). This result may be expressed as 

:svF:dv = ($)z d J  = -8nJsG;n,dS+O(m3) m2 2 
(3.4) 

V being the volume contained by S .  Hence from equation (1.4) 

d d 2 2 
Jv t: dv = -% Jv S: dv - Js t i n ,  dS = ( - 2G; + 16nt;)n, dS + 0 ( m 3 )  (3.5) 

2 
in which t i  is the coefficient of m2 in t:. So, a long calculation gives (see appendix 1) 

in this 

G~~ gf i, + 4r- 1hi4hk4 

% i  = u , ~  = ( -  n,, I), i,’ sf q i a ~ . ,  = (n,, 1) def 

so that 

li = yiaAa, = 0 

and 
ik def ia kb G = ‘1 v $ a b .  

def * = -p* ab 

(3.9) 

(3.10) 

As explained in appendix 1, equation (3.6) holds not only for the approximate metric 
(2.8) for X but also for the exact metric (2.23) for C. 

From the formula (3.6) we can immediately establish the nonpermanent nature of 
the time variation of the integral (1.10). The expression involving m2 on the right of 
equation (3.6) is an exact (second) time derivative. Thus, up to order m2 at least, equation 
(3.6) can be integrated directly with respect to f to give? 

m2 
6 4 1 ~  r - s c  Is t: dv = constant -- lim (2$ab$iab-$$),4& dS+O(m3) .  s all space 

(3.1 1) 

It can be shown that the r -  terms of the nonvanishing 2s pole wave contributions in 
G i k r  those of the quadrupole wave onwards, contain as factors time derivatives of the 
specific moments hik:bpr , , ,  (see Rotenberg 1972); for the quadrupole and octupole waves 
at least, this is evident from equations (3.7) and (2.20) to (2.22). Hence, the r -  contribu- 
tion in and its time derivatives undergo no secular time variation and, consequently, 
the same applies to the expression involving m2 on the right of equation (3.1 1). Thus we 
have established that the integral (1.10) suffers no permanent change. Although this 

t To obtain directly the formula (3.1 1) for the expression (l.lO), without the aid of Synge’s argument, would 
require knowledge of a suitable solution of the linear approximation for the entire space-time, including the 
region of the source Z. Finding such a solution would necessitate the almost impossible task of matching an 
internal solution with an external solution for a moving system, not spherically symmetric. In contrast, the 
above use of Synge’s argument for deriving the formula (3.11) involves only the external solution of the 
linear approximation. 
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result is perhaps only true to order m2,  i t  is certainly a more accurate statement than the 
formulae (1.5) and (1.6) for the rate ofchange in four-momentum of the source plus field; 
the latter have been derived only as far as the quadrupole-quadrupole and quadrupole- 
octupole terms, respectively, of the m2 contribution to  the left of equation (1.4). 

In contrast with the foregoing result, the total four-momentum J ,  of the source plus 
field may change permanently. This is due to  the fact that its rate of change, given (on 
account of equations (1.4) and (A.15)) by 

(3.12) 

is not in the form of an exact time derivative, even in its m 2  contribution. So, Jk contains 
a time-integral expression, which in many cases undergoes secular variation despite the 
fact that + i k , 4  certainly does not. To confirm this we note from equation (1.5) that, for 
k = 4, the quadrupole-quadrupole part of this integral expression is 

(3.13) 

which numerically increases steadily with time, except for those types of motion of the 
source with the rare property that the third time derivatives of the quadrupole moments 
Qlp are identically zero. 

4. Cyclic motion of the newtonian centre of mass of a purely rotating system 

In spite of the main result of the previous section, there are important examples in which 
the total potential three-momentum of the gravitational field, represented by the integral 
(1.10) ( k  = a), must be taken into account in the evaluation of the material three- 
momentum of the source. One such example is the secular motion of the newtonian 
centre of mass of a bounded, coherent, purely rotating system-a circular recoil caused 
by the three-momentum flow of emitted gravitational radiation. Obviously from 
equation (1.4), a mere cyclic time variation in the integral (1.10) is sufficient to have an 
effect on the magnitude of this circular recoil. 

To illustrate this, let us consider for simplicity a rigid rod spinning in the x y  plane 
with angular velocity w about its supposedly fixed centre of mass, chosen as the origin 0. 
In a previous paper (Rotenberg 1968) it  has been shown that the centre of mass of the 
rod moves with the same angular velocity w along a fixed circle, centre 0 and radius 

n 
where m is the mass of the rod and I is its nth moment about 0. The part (13/129)6 of 
this radius arises from due consideration of the integral (1.10). Only the remaining part 
comes from the use of the formula (1.6). 

To avoid such errors resulting from formula (1.6) in related examples, an appropriate 
correction term should be added to  the right of equation (1.6). By virtue of equations 
(3.6) to  (3.10), (2.20) to  (2.22), (2.19), (2.7), (2.6), (1.7) and (1.8), this correction term, given 
by 
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(4.3) 

5. Use of the Landau and Lifshitz pseudo-tensor? 

We conclude this paper by showing that the use of the Landau and Lifshitz pseudo- 
tensor density ‘tik instead of the Einstein pseudo-tensor density t: (which in this section 
will be written as €tki to avoid confusion) does not affect the results of the previous two 
sections. It is sufficient to prove that 

L t i k  - E t i k  = m 2 0 ( r -  3, + o ( m 3 )  (5.1) 
it being understood that the rule for raising and lowering indices of tensors applies to 
pseudo-tensors as well. 

In terms of the tensor density 

(5 .2 )  

(5.3) 

(5.4) 
(see Merller 1958, Landau and Lifshitz 1962 4 100, Cornish 1964). Applying the same 
rule for raising and lowering indices for pseudo-tensors as for tensors we obtain from 
equation (5.4) 

y i k l m  d!f il km - im kl  
- 8 8  8 8  

of weight + 2 we have 
16n(yik + J k )  = f - g)- l i 2 y m k b i  

,ba 

16 i~ (%~+Etk~)  = { g k l ( - g ) -  1’2yaih1 ,b},a 

,b},a 
16n(yik + & ‘ k )  = g”{gml (  - 8 ) -  1 /2F- - l lkb l  

l / Z y a k b l  = g i m [ { g m l ( - g ) -  1 ’ 2 } , a y a k b 1 , b  + gml(-g)- ,bo] 

= g i n t { g m l (  - g ) -  l/2),ayakbJ,b+6f ( - g ) -  1 / 2 y a k b I  
,bo 

= g i m { g , l (  - g ) -  1 / 2 } , a y a k b l , b  + ( - g ) -  1 / 2 ~ - - a k b i  
, ba 

so that by virtue of equation (5.3) 

16z(Fik + E t i k )  = gim{gml(  - g ) -  1 ’ 2 } , a F a k b 1 , b  + 16n(Fik + L t i k ) .  

This gives 

16n(,tik - Etik) = - g i m { g m l (  - g ) -  1’2},ayakbl,b (5.5) 
which is an homogeneous quadratic expression in the derivatives of the metric, as 
expected. In appendix 2 it is shown that this expression vanishes to order m2 and F 2 ,  
and so equation (5.1) is established. Hence substitution of the Einstein pseudo-tensor 
density with that of Landau and Lifshitz would yield the same results as those of the 
previous two sections. 

Appendix 1. The Einstein tensor and the Einstein pseudo-tensor 

We outline the calculations leading from equation (3.5) to equation (3.6). 

t This section has been introduced as the result of a suggestion by a referee. 
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First we derive, for the linear approximation to the metric in the form (2.8), suitable 
expressions for the Einstein tensor G: and the Einstein pseudo-tensor density t), applic- 
able to any isolated cohesive mechanical system. We substitute equation (2.1) (with y c k  

given in terms of q51, by the second of equations (2.2) and equation (2.8)) into the formulae 
1 

R,, = rfa,, - r$a + rfbr;. - r:kr:b 
i67tt; = f a b . k r i b  - # y - : b  + 6;g'm(r;br;o - ry-:,) 

64.1) 

('4.2) 

for the Ricci tensor and the pseudo-tensor density, the formula for t i  being equivalent to 
that given by Eddington (19244 59) and Tolman ( 1934 $87). Then, on using the harmonic 
and wave equations (2.3) and (2.4) ( Tik = 0) whenever possible, we obtain 

1 1  1 1  

Ri, = m2[$44,i, + +4,i4,, 
1 1  1 1  1 1  I 

+ q o b { ; ( 4 t a 4 , k b  + 4 k a 4 , i b )  + 4 , a ( i 4 i b , k  + &kb,i - ) $ i k , b  - h i k $ , b ) }  

1 1  1 I 1 1 

+ q o b q c d { 4 a c ( & ) i b , k d  +&,,,id - t + i k , b d  - t + b d , i k  - $ q i k $ , b d )  

I ; %f -qab+ab.  (A.6) 

If contributions of order r - 3  are neglected for large r ,  the above expressions (A.3) and 
(AS) can be simplified in the following way. 

It is easily verified from the form of equations (2.20) to (2.22) that 

1 1 1 1 

4 .  i k 3 0  = J * 0 4 i k , 4 + 0 ( r - 2 ) ,  +&,ab = i a A b 4 i k , 4 4  + o(r- '1, ...) ('4.7) 

in which A i ,  along with A', are given by equations (3.8). The coordinate condition (2.3) 
thus yields 

I 

A b 4 0 b , 4  = O(r-'). ('4.8) 

> L b 4 &  = -4r - '6 , ,+O(r - ' )  (A.9) 

Integrating this with respect to  t we find 
1 

noting that all terms in r -  on the right of the multipole wave solution (2.20) to (2.22) 
depend on time except the leading term on the right of equation (2.22), since these terms 
do  not occur in the corresponding static solution of the linear approximation for a static 
source. Using equations (A.6) to (A.9) and equations (3.9) in equations (A.3) and (AS) 
and then the result in 

Gi = R ; - L ~ ~ R  2 k  (A.lO) 
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and equation (A.4), we obtain for the Einstein tensor and the pseudo-tensor density 

(A.13) 

Using equation (3.7), the second of equations (3.8), equations (3.10), (A.6) and (A.13) 

in equations (A.l l )  and (A.12), we get for the coefficients G: and t i  of m2 in G: and tk, 
respectively, 

-2G: = ~ i i . k ( l l / a b l l / a b , 4 4 + ~ l l / a b , 4 l l / a b , 4 - f ~ ~ , 4 4 - 6 l l / , 4 l l / , 4 ) - 2 L : +  O(r-') (A.14) 

2 2 .  

2 

(A.15) 

i def - 1 io 
Lk = { 2 ( l l / a k - ~ a l l / k 4 - i ~ k l l / a 4 + ~ a ~ k l l / 4 4 ) + ( q a k - ~ a 6 k 4 - ~ ~ k 6 a 4 + ~ . a ~ k ) l l / } , 4 4 .  (A.16) 

With the help of equations (A.8) and (3.7) to (3.9) it can be shown that 

L;nn, = O(rw3), La = 0. (A.17) 

Hence, insertion of equations (A.14) and (A.15) in equation (3.5) and use of the second of 
equations (3.8) and equation (A.13) gives equation (3.6). Formula (3.6) is true for both 
the approximate metric (2.8) and the exact metric (2.23), because the difference between 
the values of tf corresponding to these two metrics is of order m3, the right of equation 
(A.2) consisting of products of 4 i k . l  = O(m). 

Appendix 2. Relationship between the Einstein pseudo-tensor and the Landau and Lifshitz 
pseudo-tensor 

Our aim here is to establish equation (5.1) by showing that the expression on the right of 
equation ( 5 . 5 )  is zero to order m2 and r - 2 .  

The first of equations (2.1) may be written as 
1 

g i k  = q i k  + + o(m2) (A.18) 
1 

where Yik  is the coefficient of m in y i k ;  then the first of equations (2.2) yields 
1 1 1 4 .  ik = y .  ik -1 2 q i k q a b y a b .  

From equation (A.19) it readily follows that 

(A.19) 

1 1 1 

(A.20) 1 ik ab 
q i a q k b 4 a b  = q i a q k b y a b - T q  q Y o b .  
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I t  can easily be shown from equation (A.18) that 
1 

g ' k  = q i k  - m q i a q k b y a b  + o ( m 2 )  
1 

g = - 1 - mqab ?ab f o(m2) 

(A.21) 

(A.22) 

(A.24) 

the latter equation giving 
1 

( - g ) + 1 / 2  = l + L m  - 2  q ab y a b + o ( m 2 )  (signs corresponding). (A.23) 

Hence 
1 1 

f l k  = gik( - g ) 1 / 2  = qik - m(' l iar lkbyab--q ikqabyab)  + o ( m 2 )  
1 

= q L k - m q i a q k b $ a b +  o ( m 2 )  
by virtue of equation (A.20). From equations (A.18) and (A.23), 

1 1 

g l k ( - g ) -  ' I 2  = Y ] i k + m ( y i k - 3 q l k r l a b ' r ' , b ) + O ( m 2 )  

1 
= ' l i k + m $ i k  + o(m2) (A.25) 

on account of equation (A.19). Because of equation (2.3), equation (A.24) yields 

f l k , k  = O(m2) .  (A.26) 

So it follows from equation (5.2) that 

y a k b l  ,b = ( g " b p k ' - f a l f k b ) ,  b - - f a b f k ' , b  - f k b f a i , b  + o(m2). (A.27) 

Consequently, it is readily found from equation (A.24) that 
1 

g a k b ' , b  = mqld(qkbqac - qkcqab)$cd,b +O(m2) .  (A.28) 

Equation (A.25) gives 
I 

{ g m d  - 8)- '''),a = m $ m l , a  + O(m2). (A.29) 

Multiplying the two equations (A.28) and (A.29) together and making use of the first of 

equations (A.7) and the fact that $ik is of order r - ' ,  we obtain 
1 

1 1  
{ g m l (  -g)-  1 ' 2 } , a ~ a k b f , b  = m2{qfd(qkbyjac-Ijkcqab);l,;lb$cd,4$ml,~fO(r-3)) + o ( m 3 )  

1 1 1 

= m 2 q ' d 9 m i , 4 ( ~ k ( ~ 9 c d , 4 ) - r l k c ( ~ b ; l b ) $ c d , C }  + m20(r- 3 ) +  o(m3) 

by virtue of the second of the definitions (3.8). On account of equation (A.8) and the 
second of equations (3.9) this result leads to 

{gJ - g)- 1 ' 2 } , a y a k b ' , b  = m 2 0 ( r -  3, + (A.30) 

so that the right-hand side of equation (5 .5 )  vanishes to order m2 and r - 2  ; this implies 
the validity of equation (5.1). 
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